Chronology of mitochondrial and cellular events during skeletal muscle ischemia-reperfusion.
نویسندگان
چکیده
Peripheral artery disease (PAD) is a common circulatory disorder of the lower limb arteries that reduces functional capacity and quality of life of patients. Despite relatively effective available treatments, PAD is a serious public health issue associated with significant morbidity and mortality. Ischemia-reperfusion (I/R) cycles during PAD are responsible for insufficient oxygen supply, mitochondriopathy, free radical production, and inflammation and lead to events that contribute to myocyte death and remote organ failure. However, the chronology of mitochondrial and cellular events during the ischemic period and at the moment of reperfusion in skeletal muscle fibers has been poorly reviewed. Thus, after a review of the basal myocyte state and normal mitochondrial biology, we discuss the physiopathology of ischemia and reperfusion at the mitochondrial and cellular levels. First we describe the chronology of the deleterious biochemical and mitochondrial mechanisms activated by I/R. Then we discuss skeletal muscle I/R injury in the muscle environment, mitochondrial dynamics, and inflammation. A better understanding of the chronology of the events underlying I/R will allow us to identify key factors in the development of this pathology and point to suitable new therapies. Emerging data on mitochondrial dynamics should help identify new molecular and therapeutic targets and develop protective strategies against PAD.
منابع مشابه
Colchicine protects rat skeletal muscle from ischemia/reperfusion injury by suppressing oxidative stress and inflammation
Objective(s): Neutrophils play an important role in ischemia/reperfusion (IR) induced skeletal muscle injury. Microtubules are required for neutrophil activation in response to various stimuli. This study aimed to investigate the effects of colchicine, a microtubule-disrupting agent, on skeletal muscle IR injury in a rat hindlimb ischemia model. Materials and Methods: Twenty-one Sprague-Dawley ...
متن کاملInterplay between ROS and Antioxidants during Ischemia-Reperfusion Injuries in Cardiac and Skeletal Muscle
Ischemia reperfusion (IR), present in myocardial infarction or extremity injuries, is a major clinical issue and leads to substantial tissue damage. Molecular mechanisms underlying IR injury in striated muscles involve the production of reactive oxygen species (ROS). Excessive ROS accumulation results in cellular oxidative stress, mitochondrial dysfunction, and initiation of cell death by activ...
متن کاملMechanisms of Apoptosis in Skeletal Muscle
Apoptosis is an important regulatory process that occurs during normal development and in the progression of specific diseases. Apoptosis can be induced by two alternative signaling routes: 1) external factors binding to membrane death receptors outside the cell, and 2) internal cellular events leading to the release of specific cell death molecules from mitochondria. Regardless of the mode of ...
متن کاملThe Effect of Verapamil Administred before the Reperfusion Insult in Isolated Preconditioned Rat Heart on the Microsomal ATPase and Mitochondrial Enzyme Activities
Background: Calcium overload and free radical mediated damage in the mitochondria is the most important pathological changes associated with myocardial ischemic-reperfusion injury. The verapamil post-treatment has been previously reported to prevent reperfusion-induced myocardial injury but functional recovery may be delayed due to the drug's inherent direct myocardial depression effect. In the...
متن کاملNitric Oxide is Necessary for Diazoxide Protection Against Ischemic Injury in Skeletal Muscle
Ischemia reperfusion injury (IR injury) is a common problem in clinical conditions. Researches have frequently revealed that ATP- sensitive potassium (KATP) channels and nitric oxide plays a role in protection against ischemic injury in skeletal muscle. The present study aimed at evaluating the possible link between this two pathways. Sixty-eight male wistar rats, were pretreated with saline, d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 310 11 شماره
صفحات -
تاریخ انتشار 2016